Uncovering genetic regulatory network divergence between duplicate genes using yeast eQTL landscape.

نویسندگان

  • Yangyun Zou
  • Zhixi Su
  • Jian Yang
  • Yanwu Zeng
  • Xun Gu
چکیده

Genetical genomics, a novel approach combining microarray technology and quantitative genetic analysis, aims to identify the expression quantitative trait loci (eQTLs), which may regulate the genome-wide expression pattern. In this article, we have studied yeast genomic eQTL data to investigate how the genetic eQTL regulation of ancestral gene has diverged since gene duplication. Our findings are as follows: (i) Duplicate genes have higher heritability for gene expression than single-copy genes, but little difference in their epistasis and directional effect. (ii) The divergence of trans-acting eQTLs between duplicate pairs increases with the evolutionary time since gene duplication. (iii) Trans-acting eQTL divergence can explain about 21% of the variation in expression divergence between duplicate pairs with K(S)<2.0, which increases to 27% when the transcription factor (TF)-target interaction divergence is combined. Moreover, under the partial correlation analysis, trans-acting eQTL divergence seems make a bigger contribution to expression divergence than does TF divergence. (iv) Trans-acting eQTL divergence between duplicate pairs is correlated with gene ontology categories "Biological processes" and "Cellular components," but not with "Molecular functions," and is related to fitness defect under treatment conditions, but not with fitness under normal condition. We conclude that eQTL analysis provides a novel approach to explore the effect of gene duplications on the genetic regulatory network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of cis-regulatory motifs and genetical control of expression in the divergence of yeast duplicate genes.

Expression divergence of duplicate genes is widely believed to be important for their retention and evolution of new function, although the mechanism that determines their expression divergence remains unclear. We use a genetical genomics approach to explore divergence in genetical control of yeast duplicate genes created by a whole-genome duplication that occurred about 100 MYA and those with ...

متن کامل

Rapid evolution of expression and regulatory divergences after yeast gene duplication.

Although gene duplication is widely believed to be the major source of genetic novelty, how the expression or regulatory network of duplicate genes evolves remains poorly understood. In this article, we propose an additive expression distance between duplicate genes, so that the evolutionary rate of expression divergence after gene duplication can be estimated through phylogenomic analysis. We ...

متن کامل

How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution?

We used the yeast genome sequences of gene families, microarray profiles and regulatory motif data to test the current wisdom that there is a strong correlation between regulatory motif structure and gene expression profile. Our results suggest that duplicate genes tend to be co-expressed but the correlation between motif content and expression similarity is generally poor, only approximately 2...

متن کامل

Robustness and evolvability in genetic regulatory networks.

Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of genetic perturbations can eventually make t...

متن کامل

Genetical genomics analysis of a yeast segregant population for transcription network inference.

Genetic analysis of gene expression in a segregating population, which is expression profiled and genotyped at DNA markers throughout the genome, can reveal regulatory networks of polymorphic genes. We propose an analysis strategy with several steps: (1) genome-wide QTL analysis of all expression profiles to identify eQTL confidence regions, followed by fine mapping of identified eQTL; (2) iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental zoology. Part B, Molecular and developmental evolution

دوره 312 7  شماره 

صفحات  -

تاریخ انتشار 2009